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Group Communication Speci�cations: A Comprehensive StudyRoman VitenbergDepartment of Computer ScienceTechnion { Israel Institute of Technologyromanv@cs.technion.ac.ilhttp://www.cs.technion.ac.il/�romanv Idit KeidarLab for Computer ScienceMassachusetts Institute of Technologyidish@theory.lcs.mit.eduhttp://theory.lcs.mit.edu/�idishGregory V. ChocklerComputer Science InstituteThe Hebrew University of Jerusalem, Israelgrishac@cs.huji.ac.ilhttp://www.cs.huji.ac.il/�grishac Danny DolevComputer Science InstituteThe Hebrew University of Jerusalem, Israeldolev@cs.huji.ac.ilhttp://www.cs.huji.ac.il/�dolevSeptember 17, 1999AbstractView-oriented group communication is an important and widely used building block for manydistributed applications. Much current research has been dedicated to specifying the semanticsand services of view-oriented Group Communication Systems (GCSs). However, the guaranteesof di�erent GCSs are formulated using varying terminologies and modeling techniques, and thespeci�cations vary in their rigor. This makes it di�cult to analyze and compare the di�erentsystems.This paper provides a comprehensive set of clear and rigorous speci�cations, which may becombined to represent the guarantees of most existing GCSs. In the light of these speci�cations,over thirty published GCS speci�cations are surveyed. Thus, the speci�cations serve as a unify-ing framework for the classi�cation, analysis and comparison of group communication systems.The survey also discusses over a dozen di�erent applications of group communication systems,shedding light on the usefulness of the presented speci�cations.De�ning meaningful GCSs is challenging; such systems typically run in asynchronous envi-ronments in which agreement problems that resemble the services provided by group communi-cation services are not solvable. Therefore, many of the suggested speci�cations turned out tobe too trivial, and in particular, solvable by weaker algorithms than the actual implementations.In this paper, the non-triviality issues are addressed by guaranteeing conditional liveness andby using external failure detectors. The resulting speci�cations are non-trivial on one hand, andallow implementation on the other.This paper is aimed at both system builders and theoretical researchers. The speci�cationframework presented in this paper will help builders of group communication systems understandand specify their service semantics; the extensive survey will allow them to compare their serviceto others. Application builders will �nd in this paper a guide to the services provided by a largevariety of GCSs, which would help them chose the GCS appropriate for their needs. The formalframework may provide a basis for interesting theoretical work, for example, analyzing relativestrengths of di�erent properties and the costs of implementing them.
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Part IIntroduction1 IntroductionView-oriented group communication systems (GCSs) are powerful building blocks that facilitatethe development of fault-tolerant distributed systems. GCSs typically provide reliable multicastand group membership services. The task of the membership service is to maintain a listing of thecurrently active and connected processes and to deliver this information to the application wheneverit changes. The output of the membership service is called a view. The reliable multicast servicesdeliver messages to the current view members. The �rst and best known GCS was developed aspart of the Isis toolkit [Bir86]; it was followed by over a dozen others.Typical applications of view-oriented group communication systems include state-machine repli-cation (for examples, please see [FV97a, FV97b, KD96, ADMSM94, Ami95, FLS97, KFL98]), dis-tributed transactions and database replication (please see [SR96, GS95, KA98, Kei94]), resourceallocation (please see [SM98, BDMS97]), load balancing (cf. [Kha98, KFL98]), system management(cf. [ABCD96]) and monitoring (cf. [ASAWM99]), and highly available servers for example, [MP99]and the video-on-demand servers of [ADK99, ACK+97, VvR94].Recently, GCSs have been exploited for collaborative computing (please see [CHKD96, RCHS97,BFHR98, ACDK97]), for example, distance learning (cf. [AWMY+96, ASYAW+97]), drawing on ashared white board (cf. [Sha96]), video and audio conferences (for examples, please see [CHRC97,Val98]), application sharing (cf. [KCH98, KRB+97]) and even distributed musical \jam sessions"over a network (cf. [GCA+97]).Traditionally, GCS developers concentrated primarily on system performance, in order to maketheir systems useful for real-world distributed applications. Only recently, the challenging task ofspecifying the semantics and services of GCSs has become an active research area (for examples,please see [MAMSA94, FvR95, BDM95, BDM97, BDMS97, FLS97, DPFLS98, DPFLS99, HLvR99,KK99]). However, no comprehensive set of speci�cations covering all the spectrum of provablyuseful GCS features has yet been established.The task of de�ning a meaningful GCS is complicated by the fact that group communicationservices resemble agreement problems which are unsolvable in failure-prone asynchronous environ-ments. Many of the suggested speci�cations fail to capture the non-triviality of existing GCSs.In particular, they are solvable by weaker algorithms than the actual implementations, or evenby trivial algorithms (as demonstrated in [ACBMT95]). Other speci�cations turned out to be toostrong to implement (as proven in [CHTCB96]).The main objective of this paper is to rigorously de�ne a comprehensive set of properties ofpartitionable GCSs that reect the usefulness and non-triviality of numerous existing GCS imple-mentations.1.1 Unifying the GCS propertiesThe guarantees of di�erent GCSs are stated using di�erent terminologies and modeling techniques,and the speci�cations vary greatly in their rigor. Moreover, many suggested speci�cations arecomplicated and di�cult to understand, and some were shown to be ambiguous in [ACBMT95].This makes it di�cult to analyze and compare the di�erent systems. Furthermore, it is oftenunclear whether a given speci�cation is necessary or su�cient for a certain application.1
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In this paper we formulate a comprehensive set of speci�cation \building blocks" which maybe combined to represent the guarantees of most existing GCSs. In light of our properties, wesurvey and analyze over thirty published speci�cations which cover over a dozen leading GCSs(including Consul [MPS91b], the system of Cristian and Schmuck [CS95], Ensemble [HLvR99,HvR96], Horus [vRBM96], Isis [BvR94], Newtop [EMS95], Phoenix [MFSW95], Relacs [BDGB94],RMP [WMK95], Spread [AS98], Totem [AMMS+95, MMSA+96], Transis [DM96, ADKM92b] andxAMp [RV92]). We correlate the terminology used in di�erent papers to our terminology. Thisyields a semantic comparison of the guarantees of existing systems.Another important bene�t of our approach is that it allows reasoning about the properties ofapplications that exploit group communication. We present here a set of speci�cations carefullycompiled to satisfy the common requirements of many fault tolerant distributed applications. Wejustify these speci�cations with examples of applications that bene�t from them and of servicesconstructed to e�ectively exploit them (some examples are: [FLS97, KD96, ADMSM94, FV97a,ABCD96, ACDV97, ADK99, ACK+97, VvR94, SM98, Kha98, KFL98]).Nonetheless, not all the speci�cations are useful for all the applications. Experience with groupcommunication systems and reliable distributed applications has shown that there are no \right"system semantics for all applications (cf. [Bir96]): Di�erent GCSs are tailored to di�erent appli-cations that require di�erent semantics and di�erent qualities of service (QoS). Modern GCSs (forexample, Ensemble [HvR96]) are designed in a exible fashion, which allows them to support avariety of semantics and QoS options. Such modular GCSs easily adapt to diverse applicationneeds. When specifying group communication services, it is important to preserve this exibility.In order to account for the diverse requirements of di�erent applications, we divide our speci�-cations into independent properties which may be used as building blocks for the construction of alarge variety of actual speci�cations. Individual speci�cation properties may be matched by speci�cprotocol layers in existing GCSs. This makes it possible to separately reason about the guaranteesof each layer and the correctness of its implementation (examples of veri�cation of individual layersmay be found in [HLvR99, BH98]). Furthermore, the modularity of our speci�cations provides theexibility to describe systems that incorporate a variety of QoS options with di�erent semantics.1.2 The speci�cation styleWe specify clear and rigorous properties formalized as trace properties of an I/O automaton [LT89].The I/O automaton model is widely used for reasoning about distributed applications (please see ex-amples in [Lyn96]), and has been recently exploited for specifying and reasoning about GCSs (for ex-amples, please see [FLS97, Cho97a, DPFLS98, DPFLS99, Kha98, KFL98, HLvR99, BH98, KK99]);it yields speci�cations that are clear, intuitive and correspond naturally to actual implementations(for example, using the IOA programming language [GLV97, GL98a, GL99, GL98b]). Furthermore,the well-established theory of I/O automata promotes a modular design since it allows one to reasonabout compositions of automata.Using logic formulae for stating properties allows us to avoid ambiguity. Furthermore, arbitrarycombinations of properties may be derived as conjunctions of formulae that specify di�erent prop-erties. This provides system builders with the exibility to construct modular systems in whichdi�erent properties are ful�lled by di�erent modules. The speci�cations of these modules may becombined using composition of I/O automata.Furthermore, logic formulae as well as I/O automata-style speci�cations may be used in computer-assisted proofs: Vitenberg [Vit98] presents a multi-sorted algebra of which the model herein is apossible interpretation. The axioms presented in this paper also conform with Vitenberg's formal-2
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ism. The bene�t of using multi-sorted algebras is that axioms stated using this formalism can bechecked with automated theorem proving tools. For example, the Larch Prover [GG91, GHG+93]has been used to prove correctness of several algorithms modeled as I/O automata (please seeexamples in [SAGG+93, PPG+96, LSGL95]).1.3 The di�culties of formally specifying GCSsDe�ning meaningful group communication services is not a simple task; such systems typically runin asynchronous environments in which agreement problems that resemble the services provided bya GCS are not solvable.Practical systems cannot do the impossible, they can only make their \best-e�ort". This conceptis illustrated by the following example: No system builder can guarantee that his group membershipservice will be useful at all times. Theoretically, a powerful adversary that fully controls thecommunication can force every deterministic membership algorithm to either constantly change itsmind or to reach inconsistent decisions that do not correctly reect the network situation1. However,existing group communication systems make a \best-e�ort" attempt to reect the network situationas much as possible, and indeed succeed most of the time. Note that the group communicationsystems we are concerned with are not intended for critical (real-time) applications; they run inenvironments in which such applications cannot be realized. The usefulness of these systems stemsfrom the fact that real networks rarely behave like vicious adversaries.Many formal speci�cations of group communication systems do not capture this notion of \best-e�ort". This results in speci�cations that can in fact be implemented by algorithms weaker thanthe actual implementations, or even by trivial algorithms (as demonstrated in [ACBMT95]). Otherspeci�cations turned out to be too strong to implement (please see [CHTCB96]). However, sincethe \best-e�ort" principle is an important consideration of system builders, actual systems providemore than their speci�cations require.In this paper, we address the non-triviality issues using external failure detectors and by rea-soning about liveness guarantees at stable periods.1.4 Road-map to this paperThis paper presents speci�cations for view-oriented group communication systems. Such systemstypically provide membership and multicast services within multicast groups. For simplicity's sake,we restrict our attention to the services provided within the context of a single group. This discus-sion can be easily generalized to multiple groups as long as the services are provided independentlyfor each group. In Section 6.5 we discuss issues that arise when ordering semantics need to bepreserved across groups (i.e., for messages multicast in separate groups).Throughout the paper we make a distinction between basic properties and optional ones. Basicproperties are satis�ed by most group communication systems. In addition, many of the propertiespresented in this paper are meaningless unless certain basic properties hold.The rest of this paper is divided into two main parts: the �rst presents safety properties ofgroup communication systems, and the second, liveness properties. In order to state the livenessproperties, we use the failure detector abstraction. While safety properties are preserved in all runs,liveness properties are conditional, that is, are required to be satis�ed only if certain assumptions onthe failure detector and the underlying network hold. In Section 9 we prove that this is inevitable:without such assumptions, the desired liveness guarantees are not attainable.1Impossibility results to this e�ect may be found in Section 9 of this paper and in [CHTCB96].3
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Each of the parts begins with a model section: Section 2 presents the model for all the prop-erties presented in this paper; Section 8 re�nes the model of Section 2, adding the failure detectorabstraction and assumptions required to state the liveness properties.The safety properties are divided into four sections: Section 3 presents properties of the groupmembership service; Section 4 { the properties of the reliable multicast service; properties of safe(stable) message indications appear in Section 5; and ordering and reliability properties of cer-tain multicast service types are presented in Section 6. The liveness properties are presented inSection 10.Finally, Section 11 concludes the paper; it contains tables that summarize all the propertiespresented in this paper. In these tables, we also distinguish between basic and optional properties.

4
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Part IISafety Properties of Group CommunicationServices2 The Model and Presentation FormalismThe system we consider contains a set P of processes that communicate via message passing. Theunderlying communication network provides unreliable datagram message delivery. There is noknown bound on message transmission time, hence the system is asynchronous. The system modelallows for the following changes: Sites may crash and recover; messages may be lost, failures maypartition the network into disjoint components, and previously disjoint components may merge.In this paper, we assume that no Byzantine failures occur, that is, processes do not behave in amalicious manner. (Most of the work on group communication does not address Byzantine failures.However, such failures are addressed in the Rampart system [Rei94, Rei95, Rei96b, Rei96a] andin [MMR97, MR97]).Processes are modeled as untimed I/O automata (cf. [LT89] and [Lyn96], Chapter 8). We areconcerned only with the external behavior of I/O automata, as reected in their external signatureand in their fair traces. The external signature of an automaton consists of two sets of actions bywhich the automaton interacts with its environment: input actions and output actions. A trace ofan I/O automaton is the sequence of external actions it takes in an execution; actions are executedatomically. Roughly speaking, a fair trace is a trace of an execution in which enabled actionseventually become executed. For formal de�nitions, please see [Lyn96], Chapter 8.We model the system as the GCS service. We present the GCS service speci�cation by de�ningits external signature in Section 2.1 below, and a collection of trace properties throughout the restof this paper. Each trace property is presented as an axiom in the set-theoretic mathematical modeldescribed in Section 2.2 below. A speci�cation consists of an external signature and a set of suchaxioms. We say that an I/O automaton satis�es the speci�cation if all of its fair traces satisfy theaxioms that comprise the speci�cation.2.1 The external signature of the GCS serviceThe GCS speci�cation models the the behavior of the entire system. In the speci�cation, we usethe following types:P - the set of processes.M - the set of messages sent by the application.VIDs - the set of view identi�ers; we assume that VIDs is partially ordered by the < operator.Each action in the GCS external signature is parameterized by a unique process p 2 P at whichthis action occurs. The GCS interacts with the application as depicted in Figure 1. The externalsignature of the GCS consists of the following actions:5
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Figure 1: External actions of the GCS.Interaction with the applicationThe application uses the GCS to send and receive messages, and also receives view change noti-�cations and possibly safe pre�x indications (cf. Section 5) from the GCS. Note: we include safepre�x indications in the signature, although not every interesting GCS will actually provide them.� input send(p;m); p 2 P;m 2M� output recv(p;m); p 2 P;m 2MNote: The receive action does not contain the sender as an explicit parameter. In speci�cimplementations of the automaton, the receiver may learn of the sender's identity by includingthe sender's identi�er in the message text.� output view chng(p; hid;members i; T ); p 2 P; id 2 VIDs;members 2 2P ; T 2 2Pid is the view identi�er,members is the set of members in the new view and T is the transitionalset of the Extended Virtual Synchrony (EVS) [MAMSA94] model (cf. Section 4.3.1).� output safe pre�x(p;m); p 2 P;m 2MInteraction with the environmentThe following actions model actions that may occur in the environment and a�ect the GCS:� input crash(p); p 2 P� input recover(p); p 2 PDe�nition 2.1 (Event) An event is an occurrence of an action from the GCS external signature.De�nition 2.2 (Trace) A trace is a sequence of events.2.2 The mathematical modelWe now present the mathematical model for stating trace properties of a GCS with the signaturedescribed in Section 2.1 above. We use set theory notation to state our axioms; we de�ne thefollowing sets: 6



www.manaraa.com

P, M, VIDs - are basic sets as described above.V - the set of views delivered in view chng actions is: VIDs �2P . Thus, a view V 2 V is a pair.We refer to the �rst element in the pair as V:id and to the second element as V:members .Actions The set of actions is:fsend(p;m) j p 2 P;m 2Mg [ frecv(p;m) j p 2 P;m 2Mg [fview chng(p; V; T ) j p 2 P; V 2 V; T 2 2Pg [ fsafe pre�x(p;m) j p 2 P;m 2Mg [fcrash(p) j p 2 Pg [ frecover(p) j p 2 PgTraces { sequences of actions.Events { events which are members of traces.Our modeling of a trace as a sequence of events captures the assumption that events are atomic.Note that the �rst parameter in each event is a process in P. Therefore, we can de�ne thefunction: pid : Events ! P which returns the process at which each event occurs.Since all of our axioms classify traces, they all take a trace as a parameter. For clarity of thepresentation, we make the trace parameter implicit: We �x a trace Trace = t1; t2; : : :, and all theaxioms are stated with respect to this trace.In our axioms, we omit universal quanti�ers: when a variable is unbound it is understood to beuniversally quanti�ed for the scope of the entire formula.2.3 NotationWith a view-oriented group communication service, events occur at processes within the contextof views. The function viewof : Events � P ! V [ f?g returns the view in the context of whichan event occurred at a speci�c process. Note that for a view chng event, it is not the newview introduced, but rather the process' previous view. At startup time and following a crash,a process is not considered to be in any view (modeled by ?). Some speci�cations (for example,those of [FLS97, DPFLS98, CHD98]) assume knowledge of a default view in which the process isconsidered to be at startup time. However, their speci�cations do not address the issue of recoveryfrom crash and therefore do not specify a process' view following recovery. Actual GCSs, on theother hand, do not typically assume knowledge of default views. Therefore, we chose not to includedefault views in our speci�cations.De�nition 2.3 (viewof) The view of an event ti at process p is the view delivered in a view chngevent, tj, which precedes ti and such that there is no view chng or crash events between tj andti; the view is ? if there is no such tj. Formally:viewof (ti; p) def= 8><>: V if 9j9T : tj = view chng(p; V; T ) ^ j < i ^69k : j < k < i ^ (tk = crash(p) _ (9T 09V 0 : tk = view chng(p; V 0; T 0)))? otherwiseWe de�ne some general shorthand predicates in Table 1 below. In all these predicates as well asthroughout the rest of this paper, variables named V and V 0 are members of V (not ?), variablesnamed p and q are taken from P, variables named m and m0 are members of M, variables namedT , T 0 and S are in 2P and variables i, j and k are integers.7
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Process p receives message m:receives(p;m) def= 9i : ti = recv(p;m)Process p receives message m in view V :receives in(p;m; V ) def= 9i : ti = recv(p;m) ^ viewof (ti; p) = VProcess p sends message m:sends(p;m) def= 9i : ti = send(p;m)Process p sends message m in view V :sends in(p;m; V ) def= 9i : ti = send(p;m) ^ viewof (ti; p) = VProcess p installs view V :installs(p; V ) def= 9i9T : ti = view chng(p; V; T )Process p installs view V in view V 0:installs in(p; V; V 0) def= 9i9T : ti = view chng(p; V; T ) ^ viewof (ti; p) = V 0Event ti is the next event after tj at process p:next event(i; j; p) def= j < i ^ pid (i) = pid(j) = p ^ 6 9k : pid(k) = p ^ j < k < iEvent ti is the previous event before tj at process p:prev event(i; j; p) def= j > i ^ pid (i) = pid(j) = p ^ 6 9k : pid(k) = p ^ j > k > iTable 1: General shorthand predicate de�nitions.2.4 Assumptions about the environmentIn our model, we assume that no events occur at a process between crash and recovery.Assumption 2.1 (Execution Integrity) The next event that occurs at a process after a crashis recovery, and the previous event before a recovery is a crash. Formally:(next event(i; j; p) ^ tj = crash(p) ) tj = recover(p)) ^(prev event(i; j; p) ^ tj = recover(p) ) tj = crash(p))In order to distinguish between the messages sent in di�erent send events, we assume that eachmessage sent by the application is tagged with a unique message identi�er, which may consist, forexample, of the sender identi�er and a sequence number or a timestamp. Thus, we can require thatevery message is sent at most once in the system. This assumption is not essential because a GCScan provide the same guarantees without it by adding a sequence number to distinguish betweendi�erent instances of application messages. It does, however, simplify the presentation and thede�nitions of further requirements.Assumption 2.2 (Message Uniqueness) There are no two di�erent send events with the samecontent. Formally:ti = send(p;m) ^ tj = send(q;m) ) i = j3 Safety Properties of the Membership ServiceA membership service is a vital part of every group communication system (for examples, pleasesee [BJ87, ADKM92b, AMMS+95, FvR95, WMK95, EMS95, BDGB94, MFSW95]). In this sectionwe describe typical properties of membership services.8
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We begin, in Section 3.1, with some basic safety properties ful�lled by most group communica-tion systems. In Section 3.2 we compare two approaches to group membership: partitionable andprimary component.3.1 Basic propertiesOur �rst basic safety property requires that a process is always a member of its view.Property 3.1 (Self Inclusion) If process p installs view V , then p is a member of V . Formally:installs(p; V )) p 2 V:membersSince a membership of a view reects the ability to communicate with the process and a processis always able to communicate with itself, this property holds in all group communication systemsand speci�cations. It is explicitly speci�ed in [DMS95, FvR95, EMS95, BDM95, FLS97].3.1.1 View identi�er orderOur next basic property requires that the view identi�ers of the views that each process installsare monotonically increasing.Property 3.2 (Local Monotonicity) If a process p installs view V after installing view V 0 thenthe identi�er of V is greater than that of V 0. Formally:ti = view chng(p; V; T ) ^ tj = view chng(p; V 0; T 0) ^ i > j ) V:id > V 0:idProperty 3.2 has two important consequences: it guarantees that a process does not install thesame view more than once and that if two processes install the same two views, they install theseviews in the same order.As long as there are no recoveries from crashes, Local Monotonicity is satis�ed by virtuallyall group membership systems (examples include: [RB91, DMS95, AMMS+95, FvR95, BDM97,EMS95, MS94, KSMD99]); it is also required in all the group membership speci�cations (someexamples are: [Nei96, FLS97, DPFLS98, DPFLS99]). [BDM97] states an equivalent property: Theorder in which processes install views is such that the successor relation is a partial order. This isequivalent to the property herein, since the partial order derived by successors coincides with thepartial order de�ned on the VIDs set.However, some group communication systems may violate Local Monotonicity in case a processcrashes and recovers with the same identity: when the process recovers, it installs its initial view,whose identi�er is smaller than the last view it installed before crashing. There are several ways toremedy this shortcoming: In Isis [RB91] a process recovering after a crash is assigned a di�erentidenti�er (using a new incarnation number). It is also possible to overcome this problem by savinginformation on a disk before each view installation.RMP [WMK95] guarantees uniqueness of views, (although not monotonicity), even in the faceof crashes by initializing a local counter to be the real clock value when a computer recovers froma crash.There are di�erent ways to generate view identi�ers: In Transis [DMS95] the view identi�er isa positive integer. This integer is computed based on the values of local counters, maintained byall processes. This local counter is increased by a process upon each installation. The counters inthe speci�cations of [FLS97] and [Nei96] are taken from an ordered set. Hence, an integer counteris again a possible implementation. In Horus [FvR95] and [CS95], a view identi�er is a pair hp; ciwhere p is the process that created the view and c is a value of a local counter on p. In Totem,9
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a view identi�er is a triple of integers, ordered lexicographically. In [KSMD99] the view identi�eris a pair consisting of a vector that maps view members to integer counters and an integer, wherethe integer part of the view identi�er is monotonically increasing. Newtop [EMS95] uses a logicaltimestamp to sign all messages. At the moment of the new view creation the maximum valueamong the timestamps of all view members satis�es all the properties of a view identi�er.The importance of view ordering properties is noted and emphasized in several works, forexample in [HS95, FV97a]. The protocol of [CHD98] uses Local Monotonicity (Property 3.2) inorder to implement a totally ordered multicast service. Other examples of applications that exploitview ordering can be found in [KD96, Ami95, FV97a].3.1.2 Initial view eventWe have already seen that with a view-oriented group communication system, events occur in thecontext of views. However, as per our de�nitions, this is not the case for all events: events thatoccur before the �rst view event are not considered to be occurring in any view. GCSs typicallyinstall an initial view at startup time and upon recovery from a crash (unless they crash beforedoing so), and thus every send, recv and safe pre�x event in these GCSs occurs in some view.This requirement is stated in Property 3.3 below.Property 3.3 (Initial View Event) Every send, recv and safe pre�x event occurs withinsome view. Formally:ti = send(p;m) _ ti = recv(p;m) _ ti = safe pre�x(p;m) ) viewof (ti; p) 6= ?Note: In order to enforce this property, one has to restrict the behavior of the application, sothat no send events occur before the �rst view chng event.The initial view can be determined in one of two ways:� At startup, processes use the membership service to agree upon the view, as they do for anyother view. Thus, no pre-de�ned knowledge about processes in the system is required. MostGCSs adopt this option, for example, Isis [BSS91] and Ensemble [HvR96].� Each process unilaterally decides upon its initial view without communication with otherprocesses. This approach is equivalent to having default views, but with an explicit initialview installation event. Transis [DMS95] and Consul [MPS91b] take this approach.The initial view may be singleton or may consist of all possible processes in the system. In[HS95] these two possibilities are called individual startup and collective startup, respectively.Transis is an example of a GCS which uses individual startup, and collective startup isdeployed, for example, in Consul. Note that in order to install anything di�erent than asingleton view, a process must possess a priori knowledge about other processes in the system.Such knowledge is assumed, for example, in [FLS97] and [MPS91b].We do not provide a formal speci�cation for each of these possibilities in this paper { Property 3.3(Initial View Event) accounts for installing initial views in the most general way.3.2 Partitionable vs. primary component membership servicesA membership service may either be primary component2 or partitionable. In a primary componentmembership service, views installed by all the processes in the system are totally ordered; in a2A primary component was originally called a primary partition.10
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partitionable membership service, views are only partially ordered, that is, multiple disjoint viewsmay exist concurrently. A GCS is partitionable if its membership service is partitionable; otherwiseit is primary component.All the safety properties presented above concern partitionable membership services as wellas primary component ones. However, they do not enforce a total order on views, and thus, thespeci�cations are partitionable. In order to specify a primary component membership service, weadd a safety property that imposes a total order on views. Property 3.4 (Primary ComponentMembership) below requires that the set of views installed in a trace form a sequence such thatevery two consecutive views (in this sequence) intersect. The sequence is modeled as a functionfrom the set of views installed in the trace to the natural numbers.Property 3.4 (Primary Component Membership) There is a one to one function f from theset of views installed in the trace to the natural numbers such that every view V with f(V ) > 1contains a member that installed V in a view V 0 such that f(V 0) + 1 = f(V ). Formally:9f : fV j9p : installs(p; V )g ! N such that:(f(V ) = f(V 0)) V = V 0) ^(8V : f(V ) > 1 ) 9V 0 : f(V ) = f(V 0) + 1 ^ 9p 2 V:members : installs in(p; V; V 0))This property implies that for every pair of consecutive views, there is a process that survives fromthe �rst view to the second (i.e., does not crash between the installations of these two views).Such a surviving process may convey information about message exchange in the �rst view to themembers of the second. Similar properties appear in [MS94, RB91, YLKD97, DPFLS98].The �rst and best known group membership service is the primary component membershipservice of Isis [BvR94]. It was followed by many other primary component membership services,for example, those of Phoenix [MS94], Consul [MPS91b] and xAMp [RV92]. Primary componentmembership services are also speci�ed in [CHTCB96, Nei96, Cri91, MPS91a, DPFLS98, DPFLS99].Consul [MPS91b], xAMp [RV92] and [Cri91] guarantee membership service properties only aslong as no network partitions occur. In contrast, Isis [RB91] and Phoenix [MS94] do assume thepossibility of network partitions, but allow execution of the application to proceed only in a singlecomponent. In Isis [RB91] detached processes \commit suicide", whereas in Phoenix [MS94] theyare blocked until the link is mended.The �rst partitionable membership service was introduced as part of the Transis [ADKM92b,DM96, ADKM92a] group communication system. Since then, numerous new GCSs featuring a par-titionable membership service have emerged, for example, those of Totem [AMMS+95, MMSA+96],Horus [vRBM96], RMP [WMK95], Newtop [EMS95] and RELACS [BDGB94]. Partitionable mem-bership services are discussed in the speci�cations of [MAMSA94, FLS97, BBD96, CS95, JFR93,KK99]. [HS95] presents a speci�cation of a primary component membership service and shows howto extend it to a speci�cation of a partitionable one.Partitionable membership services are useful for a variety of applications, for example, re-source allocation (please see [SM98, BDMS97]), system management (cf. [ABCD96]), monitoring(cf. [ASAWM99]), highly available servers (cf. [MP99, ADK99, ACK+97]) and collaborative com-puting applications such as drawing on a shared white board (cf. [Sha96]), video and audio con-ferences (cf. [CHRC97, Val98]), application sharing (cf. [KCH98, KRB+97]) and even distributedmusical \jam sessions" over a network (cf. [GCA+97]).In contrast, applications that maintain globally consistent shared state (for example, [FV97a,FV97b, KD96, ADMSM94, Ami95, FLS97, KFL98, SR96, GS95, KA98, Kei94]) usually avoid incon-sistencies by allowing only members of one view (the primary one) to update the shared state at agiven time (please see discussion in [HS95]). For the bene�t of such applications, some partitionable11
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membership services (for example, [FvR95, HS95]) notify processes whether they are in a primaryview or not, such that the primary views satisfy Property 3.4 (Primary Component Membership)above. The dynamic-voting based algorithm of [YLKD97] runs atop a partitionable membershipservice and provides such noti�cations. The bene�t of using a partitionable membership service forsuch applications is that members of non-primary views may access the data for reading purposes.4 Safety Properties of the Multicast ServiceWe now discuss the multicast service, and its relationship with the group membership service.GCSs typically provide various types of multicast services. Traditionally, GCSs provide reliablemulticast services with di�erent delivery ordering guarantees. Several modern group communi-cation systems have incorporated a multicast paradigm that provides the QoS of the underlyingcommunication, allowing a single application to exploit multiple QoS options. For example, inRMP, the unreliable QoS level provides the guarantees of the underlying communication. Sim-ilarly, the MMTS [CHKD96] extends Transis [ADKM92b, DM96] by providing a framework forsynchronization of messages with di�erent QoS properties; Maestro [BFHR98] extends the Ensem-ble [HvR96] GCS by coordinating several protocol stacks with di�erent QoS guarantees and theCollaborative Computing Transport Layer (CCTL) [RCHS97] implements similar concepts, gearedtowards distributed collaborative multimedia applications.Most of the multicast properties we formulate below are typically ful�lled only by reliablemulticast paradigms, and not by multicast services that directly provide the QoS of the underlyingcommunication layer.4.1 Basic propertiesOur �rst property requires that messages never be spontaneously generated by the group commu-nication service.Property 4.1 (Delivery Integrity) For every recv event there is preceding send event of thesame message:ti = receive(p;m) ) 9q9j : j < i ^ tj = send(q;m)This property is trivially implemented, so all GCSs support it; it is explicitly speci�ed in [BDM95,RV92, FLS97, DPFLS98, DPFLS99, KK99].The following property states that messages are not duplicated by the group communicationservice, that is, every message is received at most once by each process:Property 4.2 (No Duplication) Two di�erent recv events with the same content cannot occurat the same process. Formally:ti = recv(p;m) ^ tj = recv(p;m) ) i = jMost GCSs eliminate duplication (some examples are: [BDM95, EMS95, ADKM92b, KK99]).However, when a GCS directly provides the same QoS as the underlying communication layer, dupli-cation is not eliminated, for example, in the Unreliable and Unordered QoS levels of RMP [WMK95].12
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4.2 Sending View Delivery and weaker alternativesWith a view-oriented group communication service, send and receive events occur within the contextof views3. Several GCS speci�cations require that a message be delivered in the context of the sameview as the one in which it was sent; other speci�cations weaken this requirement in a variety ofways. In this section we discuss this property and some of its weaker alternatives.4.2.1 Sending View DeliveryMany GCSs guarantee that a message be delivered in the context of the view in which it was sent,as speci�ed in the following property:Property 4.3 (Sending View Delivery) If a process p receives message m in view V , and someprocess q (possibly p = q) sends m in view V 0, then V = V 0. Formally:receives in(p;m; V ) ^ sends in(q;m; V 0) ) V = V 0Among the group communication systems that support Sending View Delivery are Isis [BJ87]and Totem [AMMS+95]. In contrast, Newtop [EMS95] and RMP [WMK95] do not guaranteeProperty 4.3. Horus allows the user to chose whether this property should be satis�ed or not;the programming model in which it is satis�ed is called Strong Virtual Synchrony (SVS) [FvR95].Property 4.3 also appears in various GCS speci�cations (for examples please see [MAMSA94, FLS97,HS95, DPFLS98, DPFLS99, KK99]).Sending View Delivery is exploited by applications to minimize the amount of context infor-mation that needs to be sent with each message, and the amount of computation time needed toprocess messages. For example, there are cases in which applications are only interested in process-ing messages that arrive in the view in which they were sent. This is usually the case with statetransfer messages sent when new views are installed (examples of applications that send state trans-fer messages include [ACDV97, SM98, HS95, FV97a, ACDV97, AAD93, KD96, KFL98, Kha98]).Using Sending View Delivery, such applications do not need to tag each state transfer messagewith the view in which it was sent. Sending View Delivery is also useful for applications that sendvectors of data corresponding to view members. Such an application can send the vector withoutannotations, relying on the fact that the ith entry in the vector corresponds to the ith member inthe current view (as explained in [FvR95]).Unfortunately, in order to satisfy Sending View Delivery without discarding messages fromlive and connected processes, processes must block sending of messages for a certain time periodbefore a new view is installed. In fact, Friedman and van Renesse [FvR95] prove that withoutsuch blocking, satisfying Sending View Delivery entails violating other useful properties such asProperty 4.5 (Virtual Synchrony) and Property 10.1.3 (Self-delivery) below. Therefore, in order toful�ll Property 4.3, group communication systems block sending of messages while a view changeis taking place. In order to notify the application that it needs to stop sending messages, the GCSsends a block request to the application. The application responds with a ush message whichfollows all the messages sent by the application in the old view. The application then refrains fromsending messages until the new view is delivered.An alternative way to satisfy Property 4.3 is by discarding certain messages that arrive in thecourse of a membership change or in later views, and thus violating at least one of Self-deliveryand Virtual Synchrony, as well as the \best-e�ort" principle. We are not aware of any GCS thattakes this approach.3Note that if there is no initial view event, messages may be sent and received in the context of no view. Theproperties below only apply to those send and receive events that do occur in the context of some view.13
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4.2.2 Same View DeliveryIn order to avoid blocking the application, some GCSs weaken the Sending View Delivery propertyand require only that a message be delivered at the same view at every process that delivers it.This is speci�ed in the Same View Delivery property as follows:Property 4.4 (Same View Delivery) If processes p and q both receive message m , they receivem in the same view. Formally:receives in(p;m; V ) ^ receives in(q;m; V 0)) V = V 0Same View Delivery is a basic property. It holds in all the group communication systems andspeci�cations surveyed herein, for example, in Transis [ADKM92b], Relacs [BDM95] and in allthe GCSs that support Property 4.3 above. (Same View Delivery is called the View-SynchronousCommunication Service M2 property in [BDM95]).Same View Delivery is strictly weaker than Sending View Delivery. However, it is su�cientfor applications that are not interested in knowing in which views messages are multicast, someexamples are: [Cho97a, CHD98, KD96, ABCD96, ACK+97, ADK99].Sussman and Marzullo [SM98] compare the relative strengths of Same View Delivery and Send-ing View Delivery for solving a simple resource allocation problem in a partitionable environment.They de�ne a metric speci�c to this application that captures the e�ects of the uncertainty ofthe global state caused by partitioning; this uncertainty is measured in terms of the quantity ofresources that cannot be allocated. They show that when using totally ordered multicast (cf. Sec-tion 6.3), algorithms that use Same View Delivery and Sending View Delivery perform equally interms of this metric, while if fifo multicast is used (cf. Section 6.1), algorithms that use SendingView Delivery are superior with respect to this metric to those that use Same View Delivery. Thus,they identify a tradeo� between the cost of totally ordered multicast and the cost of Sending ViewDelivery.There are two kinds of systems that provide Same View Delivery without Sending View Delivery:systems that provide stronger semantics than Same View Delivery (yet weaker than Sending ViewDelivery), as described in Section 4.2.3 below, and systems that are built around a small numberof servers that provide group communication services to numerous application clients (for exampleTransis [ADKM92b, DM96] and Spread [AS98]). In the latter kind of systems, client membershipis implemented as a \light-weight" layer that communicates with a \heavy-weight" Sending ViewDelivery layer asynchronously4 using a fifo bu�er, as illustrated in Figure 2. The asynchrony maycause messages to arrive in later views than the ones in which they were sent. However, since theasynchronous bu�er preserves the order of recv and view chng events, messages are delivered inthe same view at all destinations. Thus, at the client level, only Same View Delivery is supported.The bene�t of using such a design is that the group membership service can proceed to agree uponthe new view without waiting for ush messages indicating that all the clients are blocked.4.2.3 The Weak Virtual Synchrony and Optimistic Virtual Synchrony modelsIn order to eliminate the need for blocking, and yet provide support for a certain type of view-awareapplications, Friedman and van Renesse [FvR95] introduce the Weak Virtual Synchrony (WVS)programming model which replaces Sending View Delivery with a weaker alternative: In WVSevery installation of a view V is preceded by at least one suggested view event. The membershipof the suggested view is guaranteed to be an ordered superset of V . Property 4.3 is replaced by4Therefore, Same View Delivery is called Asynchronous Virtually Synchronous Communication (AVSC) in [SM98].14
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Figure 2: Implementing Same View Delivery over Sending View Delivery.the requirement that every message sent in the suggested view is delivered in the next regularview. This allows processes to send messages while the membership change is taking place. Theprocesses that use WVS maintain translation tables that map process ranks in the suggested viewto process ranks in the new view. Thus, although messages are no longer guaranteed to be deliveredin the view in which they were sent, an application may still send vectors of data corresponding toprocesses without annotations.One shortcoming of the WVS model is that once a suggested view is delivered, it does not allownew processes to join the next regular view. If a new process joins while a view change is takingplace, a protocol implementingWVS is forced to install an obsolete view, and then immediately starta new view change to add the joiner. This behavior violates the \best-e�ort" principle. A secondshortcoming of WVS is that it is useful only for view-aware applications that are satis�ed withknowledge of a superset of the actual view, and does not su�ce for certain view-aware applications(for example, [YLKD97]) that require messages to be delivered in a view identical to the one inwhich they are sent.These shortcomings are remedied by the Optimistic Virtual Synchrony (OVS) model, recentlyintroduced by Sussman et al. [SKM99]. In OVS, each view installation is preceded by an optimisticview event, which provides the application with a \guess" what the next view will be. After thisevent, applications may optimistically send messages assuming that they will be delivered in aview identical to the optimistic view (note that this will be the case unless further changes in thesystem connectivity occur during the membership change). If the next view is not identical to theoptimistic view, the application may still choose to use the messages (for example, if the new viewis a subset of the optimistic view and WVS semantics are required) or roll-back the optimisticmessages.The WVS and OVS models both pose weaker alternatives to Sending View Delivery, andboth imply Property 4.4 (Same View Delivery). Furthermore, according to the metric suggestedin [SM98], algorithms that exploit WVS or OVS perform the same as algorithms that exploitProperty 4.3 (Sending View Delivery). 15
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4.3 The Virtual Synchrony propertyWe now present an important property of virtually synchronous communication that is often re-ferred to as \Virtual Synchrony". This property requires two processes that participate in the sametwo consecutive views to deliver the same set of messages in the former.Property 4.5 (Virtual Synchrony) If processes p and q install the same new view V in thesame previous view V 0, then any message received by p in V 0 is also received by q in V 0. Formally:installs in(p; V; V 0) ^ installs in(q; V; V 0) ^ receives in(p;m; V 0) ) receives in(q;m; V 0)Virtual Synchrony is perhaps the best known property of GCSs, to the extent that it engen-dered the whole Virtual Synchrony model5. This property was �rst introduced in the Isis liter-ature [BJ87, BvR94, BSS91, Bir93] in the context of a primary component membership serviceand later extended to a partitionable membership service [FvR95, DMS95, EMS95, MAMSA94,BDM95]. In [MAMSA94] and [FV97a] it is called \failure atomicity", and in [BDM95] it is called\view synchrony". Virtual Synchrony is supported by nearly all group communication systems,either for all multicast services (for example, in Ensemble [HvR96], Horus [FvR95], Isis [BJ87],Newtop [EMS95], Phoenix [SS93], Relacs [BDM97], Totem [AMMS+95] and Transis [DMS95]) oronly for some multicast services, like the totally ordered multicast of RMP [WMK95]. It alsoappears in speci�cations, for example, in [HS95, HLvR99, KK99]. An exception is set by thespeci�cations of [FLS97, DPFLS98, DPFLS99] which do not include this property.Virtual Synchrony is especially useful for applications that implement data replication usingthe state machine approach [Sch90], (for examples please see [SM98, HS95, FV97a, ACDV97,AAD93, KD96, KFL98, Kha98]). Such applications change their state when they receive applicationmessages. In order to keep the replica in a consistent state, application messages are disseminatedusing totally ordered multicast.Whenever the network partitions, the disconnected replica may diverge and reach di�erentstates. When previously disconnected replica reconnect, they perform a state transfer, that is,exchange special state messages in order to reach a common state. A group communication sys-tem that supports Virtual Synchrony allows processes to avoid state transfer among processes that\continue together" from one view to another, as explained in [ACDV97]: Whenever the member-ship service installs a new view V (with the membership V:members) at a process p, p should �rstdetermine the set T of processes in V:members that were also in p's previous view V 0, and haveproceeded directly from V 0 to V (i.e., installed view V 0 and did not install any view after V 0 andbefore V ). If, for example, T = V:members, then according to the Virtual Synchrony property,each replica in V:members has received the same set of messages in V 0 and therefore has the samestate upon installing view V . Hence, no state transfer is required.Note that T (as de�ned above) is not necessarily the intersection of the members sets of the newview and the previous one, as demonstrated in Figure 3. In this example, p and q are initially inthe same connected component (both install h1; fp; qgi). Later, p partitions from q. q detects thispartition �rst and delivers the view h2; fqgi. When the slower process p also detects the uctuationin the network connectivity and activates the membership protocol, the network re-connects andboth processes deliver h3; fp; qgi. From p's point of view, the intersection of h3; fp; qgi and thepreceding view is fp; qg, although Virtual Synchrony does not guarantee that they deliver the sameset of messages in view h1; fp; qgi.5The Virtual Synchrony property should not be confused with the Strong, Weak, Optimistic and Extended VirtualSynchrony Models, although all of these models include this property.16
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Figure 3: A possible scenario with a partitionable GCS.Unfortunately, Virtual Synchrony is an \external observer" property. If the membership serviceat p does not provide information about views installed at other processes in V , p cannot deduceT (as de�ned above) solely from V and V 0, and cannot always know whether the hypothesis ofVirtual Synchrony holds. Additional information is required to allow processes to locally deducewhen state transfer is indeed not needed. In the sections below, we present two possible solutionsto this shortcoming.4.3.1 Exploiting Virtual Synchrony using the Transitional SetThe transitional set contains information that allows processes to locally determine whether thehypothesis of Virtual Synchrony applies or a state transfer is required. Di�erent transitional setsmay be delivered with the same view at di�erent processes.The following property speci�es the requirements imposed on the transitional set:Property 4.6 (Transitional Set)1. If process p installs a view V in (previous) view V 0, then the transitional set for view V atprocess p is a subset of the intersection between the member sets of V and V 0. Formally:ti = view chng(p; V; T ) ^ viewof (ti; p) = V 0 ) T � V:members \ V 0:members2. If two processes p and q install the same view, then q is included in p's transitional set forthis view if and only if p's previous view was also identical to q's previous view. Formally:ti = view chng(p; V; T )^ viewof (ti; p) = V 0 ^ installs in(q; V; V 00) ) (q 2 T , V 0 = V 00)Consider the example of Figure 3 above, there, p's transitional set is fpg.Note: The transitional set is not uniquely de�ned by Property 4.6, since if a process p inV:members \ V 0:members does not install V 0, Property 4.6 does not specify whether p is includedin transitional sets of other processes in V:members \ V 0:members .When used in conjunction with Virtual Synchrony, the transitional set delivered at a process preects the set of processes whose states are identical to p's state. Thus, applications can exploitthis information in order to determine whether state transfer is needed as explained above (pleasesee [ACDV97] for more details).The transitional set is easily computed without additional communication over what is normallyused for installing views: Since every membership protocol exchanges messages while agreeing ona new view, each process can piggyback its previous view on a membership protocol message. Thetransitional set is easily deduced from this information.17
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The transitional set was �rst introduced as part of the transitional view in the Extended VirtualSynchrony model [MAMSA94]. This model is implemented in Transis [ADKM92b, DM96] andTotem [AMMS+95]. Later, Babao�glu et al. [BBD96] introduced the notion of an enriched view ,which, among other things, conveys information regarding the previous view of each of its members.Likewise, the views delivered by the membership service of [CS95] also convey the previous viewof every view member. The transitional set can be deduced from these views. The transitional setalso appears in the speci�cations of [ACDV97, KK99].4.3.2 Exploiting Virtual Synchrony with Agreement on SuccessorsThe following property provides an alternative to transitional sets:Property 4.7 (Agreement on Successors) If a process p installs view V in view V 0, and ifsome process q also installs V and q is a member of V 0 then q also installs V in V 0. Formally:installs in(p; V; V 0) ^ installs(q; V ) ^ q 2 V 0:members ) installs in(q; V; V 0)Property 4.7 (Agreement on Successors) holds in Horus [FV97a, FV97b], Ensemble [HLvR99]and Relacs [BDM95]6. It guarantees that every member in the intersection of p's current view andp's previous view is also coming from the same previous view. Therefore, the hypothesis of VirtualSynchrony applies for all the members of this intersection.Unfortunately, this property implies a deliberate exclusion of live and connected processes fromthe current view. Hence, it requires processing of an extra view. Though this exclusion does not vi-olate our membership liveness property (cf. Property 10.1.1 (Membership Precision) in Section 10),it does contradict the \best-e�ort" principle discussed in Section 1.3.5 Safe MessagesDistributed applications often require \all or nothing" semantics, that is, either all the processesdeliver a message or that none of them do so. Unfortunately, \all or nothing" semantics areimpossible to achieve in distributed systems in which messages may be lost. As an approximationto \all or nothing" semantics, the EVS model [MAMSA94] introduced the concept of safe messages.A safe message m is received by the application at process p only when p's GCS knows that themessage is stable, that is, all members of the current view have received this message from thenetwork. In this case, each member of this view will deliver the message unless it crashes, evenif the network partitions at that point. These \approximated" semantics are called Safe Deliveryin [MAMSA94] and Total Resiliency in [WMK95].In this paper we follow the approach of [FLS97] which decouples noti�cation of message stabilityfrom its delivery. Thus, instead of deferring delivery until the message becomes stable, messagesare delivered without additional delay. This delivery is augmented with a later delivery of safeindications. This approach also changes the semantics of safe indications to refer to application-level stability as opposed to network level. In other words, a message is stable when all membersof the current view have delivered this message to the application (and not just received it fromthe network).In our formalization, safe indications are conveyed using safe pre�x events which indicate thata pre�x of the sequence of messages received in a certain view is stable: A safe pre�x(p;m) event6In [HLvR99] and [BDM95], a stronger property is stated { when two processes install the same view, theirprevious views are either identical or disjoint. The stronger property implies that Agreement on Successors holds.18
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indicates to p that message m is stable, as well as all the messages that p received before m in thesame view as m. We de�ne three new shorthand predicates in Table 2 below.Process p receives message m before message m0:recv before(p;m;m0) def= 9i9j : ti = recv(p;m) ^ tj = recv(p;m0) ^ i < jProcess p receives message m before message m0, both of them in view V :recv before in(p;m;m0; V ) def= 9i9j : ti = recv(p;m) ^ tj = recv(p;m0) ^viewof (ti; p) = viewof (tj ; p) = V ^ i < jA message m received in a view V is indicated as safe at process p:indicated safe(p;m; V ) def= (receives in(p;m; V ) ^ 9i : ti = safe pre�x(p;m)) _(9m0 : ti = safe pre�x(p;m0) ^ recv before in(p;m;m0; V ))Message m is stable in view V :stable(m;V ) def= 8p 2 V:members : receives(p;m)Table 2: Predicate de�nitions for safe messages.The next property requires that a message is indicated as safe only if it is stable, that is, deliveredto all the members of the current view.Property 5.1 (Safe Indication Pre�x) If a message is indicated as safe, then it is stable in theview in which it was received. Formally:indicated safe(p;m; V ) ) stable(m;V )Note that Property 5.1 does not require that a message be stable before it is indicated as safe.However, since processes may crash at any point in the execution, there is no way for a system toguarantee that a message be delivered at all the members of the current view unless it was alreadydelivered to them. Thus, any actual system that provides safe indications will be forced to waituntil a message m is stable before indicating m to be safe.
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Figure 4: The Safe Indication Pre�x property.19
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Consistent replication applications (for example, [KD96, Ami95]) often use safe indications inconjunction with a totally ordered multicast service that delivers messages in the same order at allthe processes that deliver them (cf. Property 6.5 in Section 6.3). It is useful for such applicationsto receive safe indications that guarantee that all the members of a view V receive the same pre�xof messages in V up to the indicated message. We state this requirement in Property 5.2 (SafeIndication Reliable Pre�x) below.Property 5.2 (Safe Indication Reliable Pre�x) If message m is indicated as safe at someprocess p and m is also delivered by process q in view V , then every message delivered at q beforem in V is also stable in V . Formally:indicated safe(p;m; V ) ^ recv before in(q;m0;m; V )) stable(m0; V )This property is illustrated in Figure 4. In conjunction with totally ordered delivery it guaran-tees that all the members of V receive the same sequence of messages in V up to m.Safe indications are closely related to garbage collection: if a message is stable, then a GCS willno longer need to keep it in its internal bu�er. Since all GCSs attempt to recover from messagelosses and all GCSs perform garbage collection, they all internally keep track of message stability.However, some systems provide applications with safe indications or safe messages and some do not.Examples of systems that do provide this service include the Safe messages of Totem [AMMS+95,MAMSA94] and Transis [ADKM92b], the Totally Resilient QoS level of RMP [WMK95], the atomic,tight and delta QoS levels of xAMp [RV92] and the Uniform multicast of Phoenix [MFSW95]. Safedelivery is also guaranteed by Horus if one uses the order layer above the stable layer [vRHB94].A process knows that a message is stable as soon as it learns that all other members of theview have acknowledged its reception. Usually such acknowledgments are given by the GCS level.However, in Horus [vRHB94] it is the responsibility of the application to acknowledge messagereception. This approach may require extra communication and may be more complex, but itmay yield more exible and powerful semantics. Horus does not deliver safe pre�x noti�cations.Instead, the Horus stable layer maintains a more general stability matrix at each process. The(i; j) entry of the matrix stores the number of messages sent by i that have been acknowledged byj. This matrix is accessible by the application, which then can deduce the information providedby safe pre�x indications. The application can also learn about k-stability (cf. [vRHB94]), that is,k members have received the message.Some applications require a weaker degree of atomicity. For example, in quorum based systemsit could be enough to defer delivery until the majority of the processes have the message. Thisis guaranteed by Majority Resilient QoS level of RMP [WMK95]. The N resilient QoS level ofRMP [WMK95] and atLeastN QoS level of xAMp [RV92] guarantee that if a process receives amessage, then at least N processes will also receive this message unless they crash. Here N is aservice parameter.6 Ordering and Reliability PropertiesGroup communication systems typically provide di�erent group multicast services with a varietyof ordering and reliability guarantees. Here we describe the service types most commonly providedby GCSs: fifo, Causal and (several variants of) Totally ordered7 multicast. These service typesinvolve two kinds of guarantees: ordering and reliability. The ordering properties restrict the7Totally ordered multicast is sometimes called atomic or agreed multicast.20
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order in which messages are delivered, and the reliability properties complement the correspondingordering properties by prohibiting gaps or \holes" in the corresponding order within views.Since reliability guarantees restrict message loss within a view, they are useful only when pro-vided in conjunction with certain properties that synchronize view delivery with message delivery,e.g., Property 4.3 (Sending View Delivery). Similar properties may be stated for the OVS andWVS models (cf. Section 4.2.3). Systems that provide only Same View Delivery without SendingView Delivery, OVS or WVS (for example, Transis) typically implement a \heavy-weight" servicethat provides Sending View Delivery and the corresponding reliability property, and compose thisservice with an asynchronous fifo bu�er as demonstrated in Figure 2 in Section 4.2.2, thus yieldingweaker semantics (satisfying only Same View Delivery).Some GCSs (for example, Isis) provide di�erent primitives for sending messages of di�erentservice types; others (for example, Transis) provide one send primitive and allow the application totag the message sent with the requested service type; while in other systems (for example, Horusand Ensemble), a di�erent protocol stack is constructed for each service type, and a communicationend-point (associated with one such stack) provides exactly one service type.In this section, we state all of the properties in terms of the send primitive. These properties aresatis�ed only for messages sent with some service types and not for other service types providedby the same GCS. In Sections 6.1, 6.2, and 6.3 we discuss the case that all the messages aresent with the same service type: fifo in Section 6.1, Causal in Section 6.2, and Totally ordered inSection 6.3. In Section 6.4 we discuss the case that di�erent messages are sent with di�erent servicetypes. In Section 6.5 we discuss issues that arise when ordering semantics need to be preservedacross multicast groups.6.1 fifo multicastThe fifo service type guarantees that messages from the same sender arrive in the order in whichthey were sent (Property 6.1), and that there are no gaps in the fifo order within views (Prop-erty 6.2).Property 6.1 (fifo Delivery) If a process p sends two messages, then these messages are re-ceived in the order in which they were sent at every process that receives both. Formally:ti = send(p;m) ^ tj = send(p;m0) ^ i < j ^ tk = recv(q;m) ^ tl = recv(q;m0) ) k < lProperty 6.2 (Reliable fifo) If process p sends message m before message m0 in the same viewV , then any process q that receives m0 receives m as well. Formally:ti = send(p;m) ^ tj = send(p;m0) ^ i < j ^ viewof (ti; p) = viewof (tj ; p) ^ receives(q;m0) )receives(q;m)Several group communication systems (for example, Ensemble [HvR96], Horus [FvR95] andRMP [WMK95]) provide a reliable fifo service type which satis�es these two properties and doesnot impose additional ordering constraints. xAMp [RV92] provide several service levels that satisfyRequirement 6.1 but vary by their reliability guarantees.This service type is a basic building block; it is useful for constructing higher level services, forexample, Totally ordered multicast protocols [EMS95, CHD98] are often constructed over a reliablefifo service. 21
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6.2 Causal multicastThe Causal order (�rst de�ned in [Lam78]) extends the fifo order by requiring that a response m0to a message m is always delivered after the delivery of m. Formally, the causal order of events isde�ned recursively as follows:ti ! tj def= (pid(ti) = pid(tj) ^ j � i) _ (ti = send(p;m) ^ tj = recv(q;m)) _(9k : ti ! tk ^ tk ! tj)Table 3: Causal order de�nition.The Causal service type guarantees that messages arrive in Causal order (Property 6.3), andthat there are no \causal holes" within each view (Property 6.4).Property 6.3 (Causal Delivery) If two messages m and m0 are sent so that m causally precedesm0, then every process that receives both these messages, receives m before m0. Formally:ti = send(p;m) ^ tj = send(p0;m0) ^ ti ! tj ^ tk = recv(q;m) ^ tl = recv(q;m0) ) k < lProperty 6.4 (Reliable Causal) If message m causally precedes a message m0, and both aresent in the same view, then any process q that receives m0 receives m as well. Formally:ti = send(p;m)^ tj = send(p0;m0) ^ ti ! tj ^ viewof (ti; p) = viewof (tj ; p0) ^ receives(q;m0) )receives(q;m)The cbcast (Causal Broadcast) primitive of Isis [BJ87] was perhaps the �rst implementationof (Reliable) Causal multicast (satisfying Properties 6.3 and 6.4). Other GCSs that provide thisservice level include: Transis [DMS95, ADKM92b, DM96], Horus [vRBM96], Newtop [EMS95] andxAMp [RV92].6.3 Totally ordered multicastGroup communication systems usually provide a Totally ordered (atomic, agreed) service typewhich extends the Causal service type. However, GCSs vary in the semantics that their Totally or-dered multicast service provides. In Section 6.3.1 below, we discuss two possible ordering semantics:Strong Total Order (Property 6.5) and Weak Total Order (Property 6.6).In addition to the ordering semantics, Totally ordered multicast provides a reliability guarantee.In practically all existing GCSs (examples include: Transis, Horus, Newtop, xAMp, Totem, Phoenixand RMP), the reliability guarantee for Totally ordered multicast is Property 6.4 (Reliable Causal)above. In Section 6.3.2 below, we discuss a stronger alternative (Reliable Total Order).In Table 4 we de�ne an order on totally ordered messages using a one-to-one order functionfrom M to the set of natural numbers; we call this function a timestamp function:A timestamp function is a one-to-one function from M to the set of natural numbers:TS function(f) def= f :M!N ^ f(m) = f(m0) ) m = m0Table 4: Timestamp function de�nition.22
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6.3.1 Strong and Weak Total OrderWilhelm and Schiper [WS95] introduce a classi�cation of totally order multicast. In particular,this work de�nes strong and weak total order in the context of a primary component membershipservice. Here we extend these de�nitions to a partitionable environment.Strong Total Order guarantees that messages are delivered in the same order at all the processthat deliver them:Property 6.5 (Strong Total Order) There exists a timestamp function f such that messagesare received at all the processes in an order consistent with f . Formally:9f : TS function(f) ^ 8p8m8m0 : recv before(p;m;m0) ) f(m) < f(m0)Note that the timestamp function is an abstract function that merely exists: we do not requirethat the timestamp values be conveyed to the application. However, some applications (for example,the replication algorithm of [KD96]) do require that timestamps be available to them. The ATOPalgorithm [CHD98, Cho97a] which implements totally ordered multicast in Transis conveys suchtimestamps to its application.Many group communication systems implement a weaker form of totally ordered multicast thatallows processes to disagree upon the order of messages in case they disconnect from each other.Weak Total Order guarantees that processes that remain connected deliver messages in the sameorder.Property 6.6 (Weak Total Order) For every pair of views V and V 0 there is a timestamp func-tion f such that every process p that installs V in V 0 receives messages in V 0 in an order consistentwith f Formally:8V 8V 09f : TS function(f) ^(8p8m8m0 : installs in(p; V; V 0) ^ recv before in(p;m;m0; V 0) ) f(m) < f(m0))Applications that exploit GCSs for consistent replication require that processes agree upon theorder of messages even in case they disconnect from each other [Ami95, KD96, FLS97]; otherwise,updates may be applied in a di�erent order in replica that disconnect from each other, violatingconsistency. This feature is guaranteed only by Strong Total Order (Property 6.5) and not by WeakTotal Order. Strong Total Order is provided by Totem [AMMS+95, MMSA+96] and by some ofthe implementations of totally ordered multicast in Transis (\all-ack" and ATOP [Cho97a, CHD98,DM95]), Phoenix [MFSW95], RMP [WMK95] (the totally resilient QoS level) and Horus [FvR97].However, many GCSs provide a Weak totally ordered multicast service, for example, the ab-cast (Atomic Broadcast) primitive of Isis [BvR94], similar primitives in Amoeba [KT96], New-top [EMS95] and xAMp [RV92], the ToTo [DKM93] protocol implemented in Transis and certainimplementations of totally ordered multicast in Phoenix [MFSW95], RMP [WMK95] and Ho-rus [FvR97].The totally ordered multicast services, Strong or Weak, in all of the GCSs listed above guaranteethat messages arrive in Causal order (Property 6.3), and that there are no \causal holes" withineach view (Property 6.4).6.3.2 Reliable Total OrderThe Reliable Total Order Property requires processes to deliver a pre�x of a common sequence ofmessages within each view: 23



www.manaraa.com

Property 6.7 (Reliable Total Order) There exists a timestamp function f such that if a pro-cess q receives a message m0, and messages m and m0 were sent in the same view, and f(m) <f(m0), then q receives m as well. Formally:9f : TS function(f)^(8m8m08p8p08q : sends in(p;m; V ) ^ sends in(p 0;m 0;V ) ^ receives(q;m0) ^ f(m) < f(m0)) receives(q;m))In the Appendix, we prove Lemma A.1 which asserts that Properties 6.7 (Reliable Total Or-der), 6.5 (Strong Total Order), 6.2 (Reliable fifo) and 6.1 (fifo delivery) along with Property 4.3(Sending View Delivery) and the basic Properties 4.1 (Delivery Integrity), 3.2 (Local Monotonicity)and 3.3 (Initial View Event) imply Properties 6.4 (Reliable Causal) and 6.3 (Causal).Unfortunately, implementing Reliable Total Order contradicts the \best-e�ort" principle since itforces the GCS to either deliberately discard messages or to prohibit concurrent sending of messagesfrom di�erent processes. Therefore, no GCS we are aware of guarantees Requirement 6.7. The onlyspeci�cations that require Reliable Total Order are those of [FLS97].The Reliable Total Order property is exploited by the replication application in [FLS97]; itguarantees that operations will be applied to the database in a consistent order without gaps.However, the application in [FLS97] could have been satis�ed with a weaker property: In [KD96,Ami95] a similar application exploits Property 5.2 (Safe Indication Reliable Pre�x) which uses safepre�x indications (presented in Section 5) to denote the end of the pre�x in which there are no gapsin the total order. This property is weaker, since it does not preclude delivery of totally orderedmessages with gaps, as long as these message will never become safe (or stable). Since in all ofthese applications [KD96, FLS97, Ami95] updates are not applied to the database before they aresafe (stable), the weaker property is su�cient to guarantee consistency.A similar approach was taken in [FV97a], which uses explicit Reliable Totally Ordered Pre�xIndications to denote the end of the pre�x in which there are no gaps in the total order.6.4 Order constraints for messages of di�erent typesSystems that provide more than one ordering type need to specify the delivery semantics (orderconstraints) of messages with di�erent types. For example, should Causal messages be totallyordered with respect to totally ordered messages?Wilhelm and Schiper [WS95] discuss three possible semantics in the context of weak and strongtotal order. However, these semantics can be generalized for the case of two messages m1 and m2with any two di�erent ordering semantics O1 and O2 such that O2 implies O1:� unordered : there no ordering constraints on delivery of m1 and m2� weak incorporated : m1 and m2 deliveries should satisfy O1� strong incorporated : m1 and m2 are delivered according to O2For example, RMP [WMK95] supports weak incorporated semantics between any two messagesof di�erent service levels. Isis [BJ87] gives weak incorporated semantics between messages sent byabcast and cbcast multicast primitives. However, this system has another total order multicastprimitive, gbcast (Global Broadcast), so that messages sent by gbcast and cbcast primitivesare ordered according to strong incorporated semantics. Isis' successors, Horus and Ensemble, donot allow messages of di�erent types to be sent in the same group, hence they provide unorderedsemantics for messages of di�erent types. 24
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Transis [ADKM92b, DM96, Cho97b] may be con�gured to use one of several protocols pro-viding totally ordered multicast. The more e�cient ATOP protocol [CHD98, Cho97a] guaranteesonly weak incorporated semantics between a Reliable Causal message and a Strong Totally or-dered message. On the other hand, the \all-ack" protocol [DM95, Cho97b] guarantees strongincorporated semantics between messages of these two types, but it incurs longer delivery latency8.Highways [Ahu93] de�nes di�erent types of \incorporated" semantics for Causal delivery and showshow they can be e�ciently combined in a GCS.6.5 Order constraints for multiple groupsGroup communication systems generally allow processes to join multiple groups. When a messageis sent, the sender indicates which group (or groups) the message is being sent to. Messages sentin a given group are received only by the members of that group. Views are also associated withgroups { a view reects the set of processes that are currently members of a given group. Thediscussion above focuses on ordering semantics within a single multicast group. When multicastgroups overlap, one has to determine the ordering semantics of messages that are sent in di�erentgroups.Atomic Multicast (cf. [GS97b]) semantics require messages sent in di�erent groups to be de-livered in the same total order at all their destinations. For example, assume that processes pand q are both members of two di�erent multicast groups g1 and g2. Assume also that messagem1 is sent in group g1 and message m2 is sent in group g2, and that p delivers m1 before m2.Atomic Multicast requires that q also deliver m1 before m2. Guerraoui and Schiper [GS97b] provethat Atomic Multicast is costly: it requires sending messages to additional processes that are notmembers of the group the message is sent to.The Isis system does not provide Atomic Multicast: totally ordered messages sent to di�erentgroups may be delivered in di�erent orders at di�erent recipients. Other GCSs (for example, Transisand Totem) provide Atomic Multicast by using a light-weight groups approach, in which all themessages are sent to a set of daemons which totally order messages of all the groups. The daemonsforward each message to the members of the light-weight group in which the message was sent.Horus and Ensemble provide users with the exibility to chose whether Atomic Multicast willbe provided by constructing di�erent protocol stacks: If Atomic Multicast is desired, a light-weightgroup layer is used above the total order layer in the stack. Thus, messages are �rst sent to themembers of the heavy-weight group where they are totally ordered and then they are multiplexedto the di�erent groups. If Atomic Multicast is not desired, the light-weight group layer is stackedbelow the total order layer, and messages are totally ordered in their destination groups.GCSs that use a light-weight group structure typically allow users to send a message to multiplelight-weight groups. This service is implemented by sending messages to the heavy-weight (ordaemon) group, and then multiplexing messages to the appropriate light-weight group. Johnson etal. [JJS99] suggest a di�erent approach to sending a message to multiple groups. In their approach,messages are pipelined through a sequence of groups. Such pipelining preserves the order semanticsacross groups as long as groups do not overlap.Unlike total order, virtually all group communication systems provide causally ordered multicast(cf. [BSS91, KS98]), that is, preserve the causality of messages sent in di�erent groups. However,recently, Kalantar and Birman [KB99] have shown that causally ordered multicast is also costly.They show that such multicast leads to bursty behavior and to latencies three times longer than8The totally ordered multicast service that complies with strong incorporated semantics is called \Global Agreed"in [Cho97b]. 25
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the latency for delivering messages without such order constraints.
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Part IIILiveness Properties of Group CommunicationServices7 IntroductionIn this part of the paper we specify GCS liveness properties. Liveness is an important complement tosafety, since without requiring liveness, safety properties can be satis�ed by trivial implementationsthat do nothing. However, it is challenging to specify GCS liveness properties that are su�cientlyweak to be implementable and yet are strong enough to be non-trivial.In order to specify meaningful liveness properties, we envision an ideal GCS, and try to captureits ideal behavior in our liveness properties. Ideally, one would like a membership service to beprecise, that is, to deliver a view that correctly reects the network situation to all the live processes;likewise, one would want a multicast service to deliver all the messages sent in this \correct" viewto all the view members. However, how can one argue about the \correct" network situation ifthis situation is constantly changing? We observe that the liveness of a GCS is bound to dependon the behavior of the underlying network. Therefore, unless we strengthen the model, it is notfeasible to require that the GCS be live in every execution. The only way to specify useful livenessproperties without strengthening the communication model is to make these properties conditionalon the underlying network behavior9.In this paper, we require that the GCS be live only in executions in which the network eventuallystabilizes. Intuitively, we say that the network eventually stabilizes if from some point onward noprocesses crash or recover, communication is symmetric and transitive, and no changes occur inthe network connectivity. (This de�nition is made formal in Section 8). In such cases, we wouldlike the membership service to be precise (i.e., to deliver a view that correctly reects the networksituation to all the live processes).Unfortunately, it is impossible to implement such a precise membership service in purely asyn-chronous environments prone to failures. In Section 9 we prove Lemma 9.1 which asserts that aprecise membership service is as strong as an eventually perfect failure detector (3P ) (formallyde�ned in Section 8.3.1), which is known to be non-implementable in our environment. Our im-possibility result is not surprising. In fact, [CHTCB96] prove that even a very weak de�nition ofgroup membership is impossible to implement in asynchronous failure-prone environments.In order to circumvent this impossibility result, we assume that the GCS uses an external failuredetector and require the liveness properties to hold only in executions in which the failure detectorbehaves like an eventually perfect one. Similar assumptions were also proposed in [SR93, MS94,BDM97, HS95]; please see detailed discussion in Section 10.It is important to note that although our liveness properties are guaranteed to hold only incertain executions, the conditions on these executions are external to the GCS implementation.Thus, in order to satisfy our liveness requirements, a group membership implementation has toattempt to be precise in every execution as it cannot know whether in a particular execution thereis a stable component and whether the failure detector behaves like an eventually perfect one.In order to specify conditional liveness properties, we need to re�ne the model described inSection 2. To this end, in Section 8, we extend the external signature of the GCS and specify theunderlying network and failure detector as part of the environment. We also de�ne what it means9Conditional liveness speci�cations of GCSs also appear in [FLS97, CS95, KSMD99].27
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for a failure detector to \behave like 3P". In Section 9 we prove that in this model it is impossibleto implement our desirable liveness properties unless we require that the failure detector behavelike 3P . Finally, in Section 10, we state the liveness properties and survey related work.8 Re�ning the Model to Reason about LivenessIn this section we extend the model described in Section 2. Since the liveness of a GCS depends onthe network conditions and failure detector output, we extend the external signature presented inSection 2 by adding actions that represent the GCS' interaction with the network and failure detec-tor. Thus, an automaton with the external signature presented in Section 2 that satis�es the GCSsafety properties may be seen as a composition of two automata: a GCS-liveness automaton withthe extended signature presented in this section, and a Network and Failure Detector automaton.This composition is depicted in Figure 5.
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8.1 Extending the GCS external signatureInteraction with the environmentWe augment the GCS's interaction with the environment by adding communication channel up anddown actions which model changes in the connectivity from every process p to every process q:� input channel down(p; q); p; q 2 P� input channel up(p; q); p; q 2 PInteraction with the network and failure detectorThe GCS sends and receives messages via the underlying communication network, and also receivesfailure detection information from it:� output net send(p;m); p 2 P;m 2M� input net recv(p;m); p 2 P;m 2M� input net reachable set(p; S); p 2 P; S 2 2PThis action denotes that the failure detector at p believes that the set of processes in S (andonly these processes) are currently connected to p. Until the �rst net reachable set occursat p, the set of processes p believes to be connected to it is unde�ned.The mathematical model described in Section 2.2 is extended by adding the following to theActions set:fchannel down(p; q) j p; q 2 Pg [ fchannel up(p; q) j p; q 2 Pg [fnet send(p;m) j p 2 P;m 2Mg [ fnet recv(p;m) j p 2 P;m 2Mg [fnet reachable set(p; S) j p 2 P; S 2 2PgNotationWe de�ne some shorthand predicates which describe the network situation in Table 5 below. Notethat according to these de�nitions, processes are initially alive and links are initially up.Process p is alive after the ith event in the trace:alive after(p; i) def= (6 9j : tj = crash(p)) _ (9j � i : tj = recover(p) ^ 6 9k > j : tk = crash(p))Process p is crashed after the ith event in the trace:crashed after(p; i) def= 9j � i : tj = crash(p) ^ 6 9k > j : tk = recover(p)The channel from p to q is up after the ith event in the trace:up after(p; q; i) def= (6 9j : tj = channel down(p; q)) _(9j � i : tj = channel up(p; q) ^ 6 9k > j : tk = channel down(p; q))The channel from p to q is down after the ith event in the trace:down after (p; q; i) def= 9j � i : tj = channel down(p; q) ^ 6 9k > j : tk = channel up(p; q)Table 5: Predicates describing the network situation.29
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8.2 Assumption: Live NetworkWe now state a liveness assumption on the network.Assumption 8.1 (Live Network) If there is a point in the execution after which two processes,p and q are alive and the channel from p to q is up, then from this point onward, every messagesent by p eventually arrives at q. Formally:alive after (p; i) ^ alive after (q; i) ^ up after(p; q; i) ^ ti = net send(p;m) )9j : tj = net receive(q;m)8.3 Conditions for livenessAs explained above, our liveness guarantees are conditional: they require that the GCS be live onlyif a stable component eventually exists and the network behaves like an eventually perfect failuredetector. We now formally de�ne these conditions.De�nition 8.1 (Stable Component) A stable component is a set of processes that are eventuallyalive and connected to each other and for which all the links to them from all other processes (thatare not in the stable component) are down. Formally, stable component (S); S 2 2P is de�ned as:stable component (S) def= 9i8p 2 S : (alive after(p; i) ^ (8q 2 S : up after(p; q; i)) ^(8q 2 P n S : down after(q; p; i) _ crashed after (q; i)))Note that the existence of a stable component implies that within the stable component com-munication is eventually symmetric and transitive. We do not assume that the communication isalways symmetric and transitive as part of the model. This is only a precondition for the livenessproperties and for the failure detector's completeness and eventual accuracy properties stated inthe next section. If the communication over the channels is not eventually stable, symmetric andtransitive, the GCS is not required to be live and De�nition 8.2 below imposes no restrictions onthe failure detector's behavior.It is common to assume transitivity, though it is not necessary. For example, Phoenix [MS94]does not assume transitivity, but instead, it ensures eventual transitivity of communication byrelaying messages. It is more common to assume that communication is symmetric. However, inwide area networks prone to various types of failures, lack of symmetry may occasionally occur.Such absence of symmetry is di�cult to overcome. Indeed, existing GCSs do not overcome absenceof symmetry and all the speci�cations that we are aware of do not require membership to be precisein such cases.8.3.1 Eventually perfect failure detectorsAn eventually perfect failure detector is a failure detector that eventually stops making mistakes,that is, there is a time after which it correctly reects the network situation. Since eventuallyperfect failure detectors are not implementable in asynchronous environments, we do not assumethat our environment contains such a failure detector. Instead, we classify execution traces in whichthe failure detector behaves like an eventually perfect failure detector, and require that the GCS belive in such executions.De�nition 8.2 (Eventually perfect-like trace) The failure detector behaves like 3P in a giventrace if for every stable component S, and for every process p 2 S, the reachable set reported to pby the failure detector is eventually S. Formally:30
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3P � like def= 8S : stable component (S)) 8p 2 S : 9i : ti = net reachable set(p; S) ^6 9S0 6= S : 9j > i : tj = net reachable set(p; S0)Note that if no stable component exists, De�nition 8.2 imposes no restrictions on the failuredetector's behavior.De�nition 8.3 (Eventually perfect failure detector) An eventually perfect failure detector isa failure detector which behaves like 3P in every trace.Chandra and Toueg [CT96] de�ne several classes of unreliable failure detectors which are strongenough to solve di�erent agreement problems in fail-stop asynchronous environments. It is easyto see that, when restricted to a fail-stop model, our de�nition of 3P coincides with the onein [CT96], since in every execution in the fail-stop model all the correct processes form a stablecomponent (once the last faulty process fails). Since it is impossible to implement 3P in the fail-stop model, it is also impossible to implement eventually perfect failure detectors as de�ned abovein the asynchronous model of this paper.Although it is impossible to implement eventually perfect failure detectors in truly asynchronousfailure-prone environments, in practical networks, communication tends to be stable and timelyduring long periods. Time-out based failure detectors can be tuned to behave like eventuallyperfect ones during such periods. Hence, speci�cations that require liveness only in executions inwhich the failure detector behaves like an eventually perfect one are useful for practical systems.The de�nition of eventually perfect failure detectors is extended to partitionable environmentsin [DFKM96, BDM97]. The de�nitions presented herein are similar to those of [DFKM96, BDM97]but not identical. The main di�erence is that our de�nition of stable components is stated explicitlyin terms of channel down and channel up events, whereas the models in [DFKM96, BDM97]do not include such events, and connectivity (reachability) is de�ned in terms of whether the lastmessages sent on a channel reaches its destination or not.9 Precise Membership is as Strong as 3PHaving de�ned eventually perfect failure detectors in our models, we now justify their use asprerequisites for our liveness speci�cations. We focus on liveness of the membership service, sincelive membership is the basis for a live GCS. We show that a precise membership service is as strongas an eventually perfect failure detector. First, we have to de�ne a precise membership service. Weuse the following auxiliary shorthand de�nition:De�nition 9.1 (Last View) V is the last view installed at process p if p installs view V and doesnot install any views after V . Formally:last view(p; V ) def= 9i9T : ti = view chng(p; V; T ) ^ 6 9j > i 9T 09V 0 : tj = view chng(p; V 0; T 0)We now de�ne a membership service to be precise if it delivers the same last view to all themembers of a stable component. Note that this de�nition is partitionable as it requires membersof all stable components to install views.De�nition 9.2 (Precise Membership) A membership service is precise if it satis�es the follow-ing requirement: For every stable component S, there exists a view V with the members set S suchthat V is the last view of every process p in S. Formally:stable component (S) ) 9V : V:members = S ^ 8p 2 S : last view(p; V )31
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We now prove that a precise membership service is as strong as an eventually perfect failuredetector.Lemma 9.1 Precise Membership is as strong as an eventually perfect failure detector.Proof: We provide a constructive proof of how an eventually perfect failure detector can beimplemented using a Precise Membership service. Every process p running the Precise Membershipservice generates net reachable set events as follows: Whenever a view chng(p; V; T ) occurs,p generates net reachable set(p; V:members). We now show that if p's membership service isprecise, every generated trace is 3P � like.Note that if p is not a member of a stable component, there are no restrictions on the failuredetector's behavior. Therefore, we assume that there exists a stable component S such that p 2 S.In this case, Precise Membership guarantees that p installs a last view V with V:members = S.Thus, p generates net reachable set(p; S) and does not generate any net reachable set eventsafterwards, and thus satis�es the requirement for a 3P � like trace.Note that the same result applies to the fail-stop model: In the fail-stop model, the set of correctprocesses forms a stable component in every execution. Thus, a precise membership service in thefail-stop model is required to deliver to all the correct processes a last view consisting of exactlythe correct processes.In the next section, we require the GCS liveness properties to hold only in executions in whichthe failure detector behaves like an eventually perfect one. Note that it is possible to implement aprecise membership service using an eventually perfect failure detector, Section 10.1 surveys manyexamples of group communication systems that provide precise membership services when thefailure detector they employ behaves like an eventually perfect one. GCS liveness is also speci�edusing external failure detectors in [SR93, MS94, BDM97, HS95].10 Liveness PropertiesWe now specify liveness properties for partitionable GCSs (cf. Section 3.2). Our liveness propertiesare partitionable in that they require a process p to install a view in all traces in which p is in astable component and the failure detector behaves like 3P , even if the stable component is not theprimary one.We state four partitionable liveness properties: Membership Precision, Multicast Liveness, SelfDelivery and Safe Indication Liveness. Obviously, Safe Indication Liveness is only required if thesystem provides safe noti�cations (please see Section 5). All of these parts are conditional; theyare required to hold in runs in which there exists a stable component S and the failure detectorbehaves like 3P .Property 10.1 (Liveness) If the failure detector behaves like 3P , then for every stable compo-nent S, there exists a view V with the members set S such that the following four properties holdfor every process p in S. Formally:3P � like ^ stable component (S) ) 9V : V:members = S ^ 8p 2 S :1. Membership Precision p installs view V as its last view. Formally:last view(p; V )2. Multicast Liveness Every message p sends in V is received by every process in S. Formally:sends in(p;m; V ) ) 8q 2 S : receives(q;m)32
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3. Self Delivery p delivers every message it sent in any view unless it crashed after sending it.Formally:ti = send(p;m) ^ 6 9j > i : tj = crash(p) ) receives(p;m)4. Safe Indication Liveness Every message p sends in V is indicated as safe by every processin S. Formally:sends in(p;m; V ) ) 8q 2 S : indicated safe(q;m; V )Formally, stability of the connected component is required to last forever. Nevertheless, inpractice, it only has to hold \long enough" for the membership protocol to execute and for thefailure detector module to stabilize, as explained in [DLS88, GS97a]. However, we cannot explicitlyintroduce the bound on this time period in a fully asynchronous model, because its duration dependson external conditions such as message latency, process scheduling and processing time.We do not include here a speci�cation of liveness properties for a primary component GCS, sincethe liveness of a primary component membership service is dependent on the speci�c implementa-tion: Note that primary component membership services block if they cannot form a primary view.For example, any primary component membership is bound to block if the network partitions intothree minority components or if all the members of the latest view11 crash. The exact scenarios inwhich a primary component does exist depends on the speci�c implementation and the policy itemploys to guarantee Property 3.4 (Primary Component Membership).10.1 Related work10.1.1 Membership PrecisionPrecision is one of the most fundamental properties of a membership service. A group communi-cation system is useless if its membership service is not precise at least to some extent.GCSs typically exploit some failure detection mechanism based on time-outs or other methods(for example, please see [Vog96]) in order to detect conditions under which the membership protocolshould be invoked. Furthermore, the failure detector provides an initial approximation of the viewthat the membership service would agree upon. If this approximation is precise, so is the outputof the membership service. Thus, practically all of the existing GCSs satisfy Property 10.1.1(Membership Precision), even if it does not explicitly appear in their speci�cations. A similarproperty explicitly appears in the speci�cations of [BDM97].Phoenix [MS94] exploits a failure detector which is weaker than an eventually perfect one.Given the weaker failure detector, it guarantees progress but not precision: It guarantees thateach invocation of the membership protocol will terminate. However, correct processes may beremoved from the membership and forced to re-join in�nitely many times, causing the membershipto keep changing forever. We observe, however, that in executions in which the network eventuallystabilizes and the underlying failure detector used by Phoenix behaves like an eventually perfectone, Phoenix also satis�es the Membership Precision property stated herein.The speci�cations of [FLS97, CS95] guarantee precision of the membership service at periodsduring which the underlying network is stable and timely. These speci�cations guarantee thetimeliness of the service and not just eventual termination. Of course, such guarantees can onlybe made when network message delivery and process scheduling are timely. The speci�cations areparameterized by timeouts suited for the underlying network and by constants that depend on theprotocol implementation. Since in this paper we provide general speci�cations and do not focus ona speci�c protocol, we cannot provide such an analysis.11Recall that in a primary component membership service views are totally ordered.33
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10.1.2 Multicast and Safe Indication LivenessLike Membership Precision, Property 10.1.2 (Multicast Liveness) is satis�ed by all existing GCSimplementations, although it is not always explicitly formulated in the papers describing thosesystems. This property eliminates trivial GCS implementations that capriciously discard messageswithout delivering them. A similar multicast liveness property appears in [FLS97].An alternative approach to formulating multicast liveness was undertaken in [FvR95, DMS95,BDM95], which require the following property:Property 10.2 (Termination of Delivery) If a process p sends a message m in a view V , thenfor each member q of V , either q delivers m, or p installs a next view V 0 in V . Formally:sends in(p;m; V ) ^ q 2 V:members ) delivers(q;m) _ 9V 0 : installs in(p; V 0; V )If Membership Precision holds, then Termination of Delivery implies Property 10.1.2 (Multi-cast Liveness). In addition, Property 10.2 (Termination of Delivery) requires that the membershipservice not block even when the network is unstable. However, we believe that this property isnot particularly useful for applications: when the network is unstable, a membership service thatsatis�es this property will continuously install views without any guarantee to deliver messages inthese views. Continuously installing new views at unstable times may only increase the load andlengthen the unstable period. Furthermore, any membership service that satis�es Property 10.2 isforced to deliver obsolete views, that is, views that are known to be changing soon, and thus violatethe \best-e�ort" principle (cf. Section 1.3). However, most existing membership algorithms do sat-isfy Property 10.2 (Termination of Delivery). An exception is the membership service of [KSMD99]which does not install obsolete views.In GCSs that provide primary component membership, message stability may be formulatedas follows: If a process delivers a message in view V , then all non-faulty members of V eventuallydeliver this message. This is called Uniformity in the Isis literature and in [SS93] and Unanimityin [RV92].Property 10.1.3 (Self Delivery) requires that if the network eventually stabilizes, processesdeliver all of their own messages unless they crash after sending them. Self Delivery complementsMulticast Liveness by requiring that messages sent in any view be delivered (unless their sendercrashes), and not just those sent in the last view.All the GCSs that we are aware of satisfy Self Delivery, some examples are: Isis [BJ87], Tran-sis [DMS95], Totem [AMMS+95], Horus [FvR95] and Newtop [EMS95]. In RMP [WMK95] SelfDelivery holds for all multicast services except the Unreliable one. However, this property does nothold in the speci�cations of [FLS97] which discard \left over" messages upon membership changes.Some speci�cations (for example, [MAMSA94]) require Self Delivery to hold in all executions,not just those in which the network eventually stabilizes. Since the GCS cannot deduce whetherstability holds in a certain execution, these two formulations of Self Delivery are essentially equiv-alent.Property 10.1.4 (Safe Indication Liveness) appears only in the speci�cation of [FLS97] as thisis the only work that explicitly introduces the notion of safe indications.
34
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Part IVConclusions11 SummaryWe have presented a comprehensive set of speci�cations which may be combined to represent theguarantees of most existing GCSs. We have speci�ed clear and rigorous properties formalized astrace properties of I/O automata. In light of these speci�cations, we have surveyed and analyzedover thirty published speci�cations which cover a dozen leading GCSs. We have correlated theterminology used in di�erent papers to our terminology.We have seen that the main components of a GCS are the membership and multicast services.In Table 6, we summarize the safety properties of the membership and multicast services, makinga distinction between basic properties and optional ones.Basic Properties Optional PropertiesProperty Page Property PageProperty 3.1 Self Inclusion 9 Property 3.4 Primary Component Membership 11Property 3.2 Local Monotonicity 9 Property 4.3 Sending View Delivery 13Property 3.3 Initial View Event 10 Property 4.5 Virtual Synchrony 16Property 4.1 Delivery Integrity 12 Property 4.6 Transitional Set 17Property 4.2 No Duplication 12 Property 4.7 Agreement on Successors 18Property 4.4 Same View Delivery 14Table 6: Summary of safety properties of the membership and multicast services.In order to account for the diverse requirements of di�erent applications, we followed a modularparadigm in this paper: Our speci�cations are divided into independent properties which may beused as building blocks for the construction of a large variety of actual speci�cations. Individualspeci�cation requirements may be matched by speci�c protocol layers in modular GCSs. Thismakes it possible to separately reason about the guarantees of each layer and the correctnessof its implementation. Furthermore, the modularity of our speci�cations provides the exibilityto describe systems that incorporate a variety of QoS options with di�erent semantics. Table 7summarizes the properties of di�erent ordering and reliability services (fifo, causal and totallyordered) we have described in this paper, as well as safe message indications. In the future, ourframework may be used for specifying additional qualities of service and semantics.fifo Multicast Causal MulticastProperty 6.1 fifo Delivery 21 Property 6.3 Causal Delivery 22Property 6.2 Reliable fifo 21 Property 6.4 Reliable Causal 22Totally Ordered Multicast Safe IndicationsProperty 6.5 Strong Total Order 23 Property 5.1 Safe Indication Pre�x 19Property 6.6 Weak Total Order 23 Property 5.2 Safe Indication Reliable Pre�x 20Property 6.7 Reliable Total Order 24Table 7: Properties of di�erent ordered multicast services and of safe message indications.We have presented speci�cations of GCSs running in asynchronous failure-prone environmentsin which agreement problems that resemble group communication services are not solvable. We35
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addressed the non-triviality issues and suggested ways to circumvent impossibility results by spec-ifying conditional liveness guarantees and by using external failure detectors. We have argued thatour speci�cations are non-trivial on one hand, and feasible to implement on the other. In Table 8we summarize the liveness properties.Basic Properties Optional PropertiesProperty Page Property PageProperty 10.1.1 Membership Precision 32 Property 10.1.4 Safe Indication Liveness 32Property 10.1.2 Multicast Liveness 32 Property 10.2 Termination of Delivery 34Property 10.1.3 Self Delivery 32Table 8: Summary of liveness properties.We would like to emphasize that the set of speci�cations presented herein has been carefullyassembled to satisfy the common requirements of numerous fault tolerant distributed applications.Throughout the paper, the speci�cations are justi�ed with examples of applications that bene�tfrom them.We hope that the speci�cations framework presented in this paper will help builders of groupcommunication systems understand and specify their service semantics, and that the extensivesurvey will allow them to compare their service to others. Application builders will �nd in thispaper a guide to the services provided by a large variety of GCSs, which would help them chosethe GCS appropriate for their needs. Moreover, we hope that the formal framework will providea basis for interesting theoretical work, analyzing relative strengths of di�erent properties and thecosts of implementing them.In the Appendix, we present Lemma A.1 which implies that a certain combination of propertiesof a reliable totally ordered and fifo ordered multicast service implies that the service also preservesthe reliable causal order. We have included the lemma in this paper, as it can be proven by logicalanalysis of the properties themselves without considering GCS implementations. By reasoningabout implementations, using arguments about when one execution of an algorithm \looks like"another execution to a certain instance of the algorithm, one can prove many other links betweenproperties. For example, one can prove a \dual" assertion to Lemma A.1, showing that a non-reliable totally ordered and fifo ordered multicast service implies that the service also preservesthe causal order. An interesting research direction would be to explore additional relationships andtradeo�s between di�erent properties.12 AcknowledgmentsWe are grateful to Uri Abraham, Aviva Dayan, Roberto De Prisco, Alan Fekete, Shmuel Katz,Roger Khazan, Nancy Lynch, Sharon Or, Roberto Segala and Jeremy Sussman for many commentsand helpful suggestions which helped us improve the quality of the presentation. We thank KenBirman and Robbert van Renesse for inspiring us to undertake the project of writing this paper.
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AppendixA Proving a Relationship between Di�erent Properties.We prove that a certain combination of properties of a reliable totally ordered and fifo orderedmulticast service implies that the service also preserves the reliable causal order.Lemma A.1 Properties 6.7 (Reliable Total Order), 6.5 (Strong Total Order), 6.2 (Reliable fifo)and 6.1 (fifo delivery) along with Property 4.3 (Sending View Delivery) and the basic Properties 4.1(Delivery Integrity), 3.2 (Local Monotonicity) and 3.3 (Initial View Event) imply Properties 6.4(Reliable Causal) and 6.3 (Causal).Proof: First, let us prove the following claims:Claim A.1.1 If ti = recv(p;m), tk = send(p;m0), i < k, viewof (ti) = viewof (tk) and receives(q;m0),then ts(m) < ts(m0)Proof: If m = m0, we get a contradiction to Delivery Integrity (Property 4.1) since everymessage can be sent only once (by Message Uniqueness, Assumption 2.2). Then, since m 6= m0,ts(m) 6= ts(m0). Now, assume the contrary, that is, ts(m) > ts(m0). Then, according to ReliableTotal Order (Property 6.7), since there is recv(p;m) and recv(q;m0), there is also recv(p;m0).According to Strong Total Order, recv(p;m0) is before recv(p;m). This means that p receives itsown message m0 before sending it. Since every message can be sent only once, this is a contradictionto the basic Delivery Integrity property 4.1. Thus, ts(m) < ts(m0). 2Claim A.1.2 If ti and tk are two events of types send or recv that occur at the same process p,such that i < k, then either viewof (ti) = viewof (tk) or viewof (ti):vid < viewof (tk):vid.Proof: According to Initial View Event and Strong Local Monotonicity properties.2Claim A.1.3 If send(p;m) ! send(p0;m0), then there is a sequence of events either S1 =send(p1 = p;m1 = m) ! send(p1;m01) ! recv(p2;m01) ! send(p2;m2) ! recv(p3;m2) !send(p3;m3) ! : : : ! recv(pn= p0;mn�1) ! send(pn= p0;mn=m0) or S2 = send(p1= p;m1=m)! recv(p2;m1)! send(p2;m2)! : : :! recv(pn=p0;mn�1)! send(pn=p0;mn=m0).Proof: According to the transitive causality de�nition (De�nition 6.2), there is a sequence S ofevents starting with send(p;m) and ending with send(p0;m0). Each pair ti and tk of consecutiveevents in this sequence is either sending and receiving of the same message, or pid(ti) = pid(tk)and i < k. Let us �x a process q such that some event in S occurred at q, and look at the �rst andthe last event in S that occurred at q. The last event is always a send event. The �rst event is asend event for q = p, and recv event for q 6= p. Therefore, if for each process q, we leave only the�rst and the last event in S that occurred at q and remove all the intermediate events from S, weobtain the required sequence. 2We now proceed to the proof of the lemma. Let us assume that ti = send(p;m) ! tk =send(p0;m0), viewof (ti) = viewof (tk) and there exists recv(q;m0). We should prove that there37
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is also recv(q;m), and recv(q;m) precedes recv(q;m0). According to Claim A.1.3, there is a asequence S1 of events send(p1= p;m01=m) ! send(p1;m1) ! recv(p2;m1) ! send(p2;m2) !: : :! recv(pn=p0;mn�1)! send(pn=p0;mn=m0) 12. For proof convenience we denote q = pn+1.First, let us prove that all events in this sequence occur in the same view. Assume the con-trary. Then there is a pair of consecutive events tj and tl in S such that viewof (tj) 6= viewof (tl).If tj and tl are send and recv of the same message, then viewof (tj) = viewof (tl) according toSending View Delivery. Therefore, tj and tl occurred at the same process, and j < l. UsingClaim A.1.2, we conclude that viewof (tj):vid < viewof (tl):vid. Hence, viewof (send(p1;m01)):vid �viewof (send(p1;m1)):vid = viewof (recv(p2;m1)):vid � viewof (send(p2;m2)):vid = : : : = viewof (tj):vid <viewof (tl):vid = : : : = viewof (recv(pn;mn�1)):vid � viewof (send(pn;mn)):vid. Summarizing,viewof (ti):vid < viewof (tk):vid. This is a contradiction to the lemma condition that viewof (ti) =viewof (tk).Since there are send(p1;m01), later send(p1;m1) and recv(p2;m1) in the same view, thereis also recv(p2;m01) according to Property 6.2 (Reliable fifo). From Property 6.1 (fifo Deliv-ery), recv(p2;m01) precedes recv(p2;m1). Hence, according to Property 6.5 (Strong Total Order),ts(m01) < ts(m1). Applying Claim A.1.1 to recv(pi;mi�1), send(pi;mi) and recv(pi+1;mi) for2 � i � n, we conclude that ts(mi�1) < ts(mi). Thus, ts(m01=m) < ts(mn=m0). Since there isrecv(q;m0), then, according to Property 6.7 (Reliable Total Order), there is also recv(q;m), andaccording to Property 6.5 (Strong Total Order), recv(q;m) precedes recv(q;m0). 2

12We do not give a separate proof for S2 since it can be considered as a private case of S1.38
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